ADC/DAC(2)- 选ADC我们主要看什么?

2018-12-03 11:28:52 来源:电路设计技能
标签:

 

上篇文章我们讲述了ADCDAC是连接模拟世界和数字世界的桥梁,但桥梁有多种 - 有宽窄之分、快慢之分。同样ADC和DAC也有很多公司提供不同种类的器件,如何从这些品类繁多的器件中选择适合自己项目的器件?由于ADC和DAC的差异性还是比较大的,因此我们今天的文章就针对ADC来看一下:
 
ADC - 将在时间上和幅度上都连续的模拟电信号在一定序列的时钟信号的上升沿或下降沿对其幅度进行量化,生成能够用数字表征的信号幅度值。如下图:
 
 
直观上理解,让数字化的信息能够尽可能不失真地表征原来的模拟信号信息,必须具备以下条件(先从静态的信号看):
 
对信号幅度的量化要足够的精细,也就是要达到一定的细致程度,比如你向一个姑娘介绍对象,说一个身高1.75米的小伙身高一米多、不到两米(只用了10进制中的一个数字),姑娘肯定不满意,即便你说1米7多、不到1米8(用了十进制中的2个数字),她还是不满意,一定要知道他究竟是1.75米还是1.78米。如果你告诉他1.756m,她一定会觉得你吃饱了撑的,因为最后一个数字她并不关心,她也不相信最后一个数字的准确性(1天24小时内会发生变化),因此描述小伙子身高的精度只需要3位数(十进制),少了无法满足系统的要求,多了在这种场景下失去了意义,本身也不准确。
 
 
ADC应用中比较直观的就是对声音和图像的量化,就拿图像来比方,如果你用一个bit表征一个像素点,那整个图像就量化后就是黑白的,如果你用4bits来量化每个像素点,可以得到16级灰度的图像,如果你对每个像素点分开三种颜色R、G、B分别以8位进行量化,则就可以得到普通肉眼分辨不出来细节的图像 - 在电脑上屏幕上你能看到一个让你想咬一口的苹果,如果你使用了R、G、B三色都为8位的ADC进行量化的话。
 
要不要再精细地量化?更精细意味着耗费更多的bit数 -  ADC价格增加、存储空间也增加,未必给你的视觉效果带来任何改善,除非某些用户的眼睛对细节的辨别能力超级的强。当然现在的照相机对每个像素点进行采样的分辨率远高于8bit(14bit的ADC很常用),why?这在以后的文章中会讲到,主要是为了得到足够的动态范围,你可以在后期对图像进行亮度、对比度,乃至ISO等等进行调节,省去了ADC前面模拟电路的复杂设计。
 
结论 - 量化精度的选取,也就是ADC的位数- 分辨率是非常重要的一个指标,我们要根据实际要设计的系统的要求,综合考虑到系统的其它因素以及成本等选定一个合适的位数。记住更多的位数未必给你更精准的信息,因为量化的过程取决于很多因素,量化后产生的误差(error)可能让你后面的位数没有任何意义,比如一个人每天的身高从早上起床到晚上躺下其变化可能在1.75-1.76之间,任何1.75x中国的x都是由于采样时间不同导致的模糊性,也就相当于ADC的量化误差。
 
想一下 - 量化误差取决于哪些因素?
 
分辨率 - 如果你用1位数,只能说1米多,而1米-2米之间的所有不同都被模糊掉了,如果你用2位,则可以分辨的是1.7或1.8,1.7-1.8之间的所有不同也被模糊掉了,因此由于分辨率不够就会导致量化的误差,看下面的正弦波被不同位数的ADC量化后的数字表征,16bit可以非常精准地描述原来的模拟波形,而3bit的采样则让我们看到像楼梯台阶一样的信号。当然这两个波形的采样时钟频率也不同。
 
    
 
线性度 - 你的量尺理论上应该是刻度均匀的,如果不均匀,用你的标尺测量出来的也就有了误差,这种不均匀就是非线性,我们用的所有ADC都是通过将输入电压同内部的基准电压进行比较来进行判决其所处的区间的,如果每个刻度比较的电路不一致,自然就会造成非线性误差,是电路就会有不一致性,因此非线性的误差一定是存在的,只是不同的工艺、不同的厂商的不同器件其线性度也不同,因此非线性误差也就不同,一般器件会用积分非线性(INL)和差分非线性(DNL)两个指标来进行表征;比如ADI公司的8位ADC器件AD9283在其数据手册中给出的DNL和INL的数据 - 由于非线性导致的误差相当于最小分辨精度(LSB)的值。
 
   
 
供电噪声 任何被用来做基准的东西都应该是稳定不变的,比如ADC和DAC中使用的参考电压(内部转换成参考电流),只要是电源供电的电压,就无法100%保证其没有波动(噪声),无论是ADC的模拟电路供电电压,还是参考基准源的电压,都需要尽可能保持干净,其上面的噪声一定会导致量化误差。
 
关注电子技术交流网微信 ( ee-focus )
限量版产业观察、行业动态、技术大餐每日推荐
享受快时代的精品慢阅读
 

 

继续阅读
Verilog编程的要点
Verilog编程的要点

FPGA的设计就是将自己想要实现的逻辑通过计算机能够理解的语言描述出来,并让计算机根据FPGA内部的资源生成可以进行资源配置并在加电以后能够执行的过程。

搞嵌入式系统干嘛不用树莓派?
搞嵌入式系统干嘛不用树莓派?

今天的电子技术领域,嵌入式系统已经是个很大的分支,相对于折腾模拟电路、fpga、射频等,貌似嵌入式系统更容易入门,就业的选择也更多,毕竟我们已经到了万物互联的时代,而ARM又几乎一统了处理器的浆糊,将曾经各据一方的处理器霸主们都统一在Cortex A/M系列下面共同完善着Arm的生态系统

赢取白富美,出任CEO,走上人生巅峰
赢取白富美,出任CEO,走上人生巅峰

转发一下全国智能车大赛的总瓢把子 - 清华大学卓大大的一篇文章,给周末还在睡懒觉的朋友们激励一下,要努力哦!

17岁的学生用废弃电子元器件搭建的一座城
17岁的学生用废弃电子元器件搭建的一座城

朋友圈里发了一张图,引起了很多网友的兴趣,让大家猜猜是什么,预料之中的没有人猜中,在这里揭晓答案:

几款小而美的FPGA学习板
几款小而美的FPGA学习板

任何一种开发板,我都对小个头的感兴趣,因为越是小个头的其实越强大,从中也越能够体会出原设计者的用心和技术含量。

更多资讯
为什么说实体零售商构建流量池是未来竞争刚需?

实体零售的数字化转型已是必然趋势,但多数实体零售商的转型难言成功,转型期的阵痛是实体零售必须付出的代价。

锂电池和18650鼻祖的涅槃重生——从索尼18650到村田21700

锂电池具有体积小、容量大、重量轻等优点,被广泛应用于手机、电脑、家电、电动汽车和储能市场等众多领域,不断焕发出旺盛的生命力。

受年底清库存影响,11月主流3030 LED封装产品价格明显下滑

集邦咨询LED研究中心(LEDinside)最新价格报告指出,2018年11月,中国市场3030 LED封装产品价格下滑较为明显。

AspenCore全球电子成就奖: CeraCharge™和PowerHap™荣获年度产品大奖

TDK株式会社(东京证券交易所代码:6762)近日宣布CeraCharge™和PowerHap™荣获ASPENCORE 2018 年“年度高性能无源器件奖”。

设计单电源电路时需要比双电源电路更加小心

我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

电路方案